Author Name:

SEOK WOO YANG, MD & PhD

Contact information:

E.mail: soplab@outlook.kr

Date: 

2020.03.10

 

 As of 9th Mar. 2020, a novel coronavirus (2019-nCoV, COVID-19) has been highly contagious and its clinical outcome is unpredictable. The main cause of death is acute respiratory distress syndrome and the next things are heart and renal failure.

 About the pulmonary pathologic findings in the autopsy cases of COVID-19, Xu et al reported that diffuse alveolar damage with desquamation of pneumocytes, intra-alveolar fibromyoid exudate, and pulmonary edema, indicating acute lung injury, pathologically and acute respiratory distress syndrome(ARDS), clinically. In contrast, the tissue destruction of the heart and the liver was not remarkable like the lung. In the pulmonary lesion, there were high concentration of both Th17 cells among CD4 helper T cells and cytotoxic T cells with cytolytic granules, like perforin and granulysin. This cytolytic injury can be interpreted to have a correlation with the pulmonary pathologic findings of COVID-19. Th17 CD4 cells contribute to activation of cytotoxic T cells with cytolytic injury. Th17 CD4 cells are polarized by IL-6 and TGF-β which activate Th17 transcription factor RORγt.[1]

 

 In this context, if IL-6 and TGF-β can be suppressed, the detrimental lung injury by T17-CD4 cell-induced cytotoxic T cells may be lessened. As the representative antibiotics for this assumption, roxithromycin and cefuroxime can be candidates. These antibiotics reduce the production of IL-6 and TGF-β.[2],[3]

 

 About the reason why roxithromycin and cefuroxime can be feasible therapeutic antibiotics, there is a supportive molecular mechanism. The pulmonary infection by coronaviruses shares the inflammatory responses by Mycoplasma pneumoniae and LPS(lipopolysaccharide found in Gram-negative bacteria), in which IL-8 and IFN-γ react with CFTR(cystic fibrosis membrane conductance regulator) on the lung epithelium and contribute to the pulmonary infection.[4] The kinds of pulmonary infection through this inflammatory pathway are as follows:

(1) Mycoplasma pneumoniae, which is usually treated by macroride antibiotics like roxithromycin and erythromycin.

(2) LPS by Gram-negative bacteria. The Gram-negative bacterial pneumonia in association with coronaviruses are caused by Gram-negative bacteria. Cefuroxime is one of many antibiotics for Gram-negative bacteria.

 

 Alveolar macrophages play a central role in orchestrating inflammation of ARDS.[5] Once alveolar macrophages are stimulated, one of the pulmonary inflammatory responses is to damage lower respiratory tract and alveoli, especially alveolar type 2 epithelial cells.

 

 In summary, in terms of the above inflammatory mechanisms, the therapeutic strategy to prevent ARDS can be inferred, as follows:

(1)   Steroid as inhalant or oral intake to block the inflammatory responses by alveolar macrophages.

(2)   Macroride antibiotics or cefuroxime to suppress the cytokine immune reaction by T17 CD4 cell-mediated cytolytic cytotoxic T cells.

 

References: 

1. Xu Z, Shi L, Wang Y, Zhang J, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;S2213-2600(20)30076-X.

2. Urasaki Y(1), Nori M, Iwata S, et al. Roxithromycin specifically inhibits development of collagen induced arthritis and production of proinflammatory cytokines by human T cells and macrophages. J Rheumatol. 2005; 32:1765-74.

3. Lannergård A, Viberg A, Cars O, Karlsson MO, Sandström M, Larsson A. The time course of body temperature, serum amyloid A protein, C-reactive protein and interleukin-6 in patients with bacterial infection during the initial 3 days of antibiotic therapy. Scand J Infect Dis. 2009;41:663-71.

4. Peteranderl C, Sznajder J, Herold S, Lecuona E. Inflammatory Responses Regulating Alveolar Ion Transport During Pulmonary Infections. Front Immunol, 8, 446, 2017.

5. Aggarwal NR, King LS, D'Alessio FR. Diverse macrophage populations mediate acute lung inflammation and resolution. American journal of physiology. Lung cellular and molecular physiology. 2014;306:L709–25.

SUMMARIZER: SEOK WOO YANG, MD & PhD (E.mail: soplab@outlook.kr)

DATE: 2020.03.10

THEME REFERENCE PDF file download

Molecular Pathology

(acute respiratory distress syndrome)

Gralinski LE, Baric RS. Molecular pathology of emerging coronavirus

infections. Version 2. J Pathol. 2015 Jan;235(2):185-95.

PDF free for use.

An Overview of Their Replication and Pathogenesis

Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol. 2015;1282:1–23. PDF free for use.
Virus-Host Interactions Lim YX, Ng YL, Tam JP, Liu DX. Human Coronaviruses: A Review of Virus-Host Interactions. Diseases. 2016;4(3):26. PDF free for use.

Anatomic Pathology of SARS

(including central nervous system and adrenal gland)

Pathology and Pathogenesis of Severe Acute Respiratory Syndrome

Jiang Gu, Christine Korteweg

Am J Pathol. 2007 Apr; 170(4): 1136–1147.

PDF free for use.
Renal Pathology Acute renal impairment in coronavirus-associated severe acute respiratory syndrome. Chu, Kwok Hong et al.

Kidney International, Volume 67, Issue 2, 698 - 705

PDF free for use.

AUTHOR: SEOK WOO YANG, MD & PhD (E mail: soplab@outlook.kr)

DATE:2020.03.09

CONTENT:

 

ORGAN ANATOMIC PATHOLOGIC FINDINGS CLINICAL IMPLICATION
Lung

Diffuse alveolar damage.

Desquamation of pneumocytes.

Hyaline membrane disease.

Intra-alveolar fibromyxoid exudate.

Pulmonary edema.

Interstitial mononuclear cell infiltration, predominantly lymphocytes.

Multinucleated syncytial cells with atypical enlarged pneumocytes characterised by large nuclei, amphophilic granular cytoplasm, and prominent nucleoli.[1]

 

Acute respiratory distress syndrome.

Acute lung injury.

Heart Interstitial mononuclear inflammatory infiltrates  
Liver

Moderate microvesicular steatosis.

Mild lobular and portal activity.[1]

 
Kidney in COVID-19

No datum.

 
Kidney in MERS-CoV

Acute kidney injury.

Tubular epithelial cell degnerative/regenerative change.[2]

Kidney failure.
Central nervous system in COVID-19 No datum.  
Central nervous system in SARS-CoV Viral particles rich in brain neurons.[3] A potential neuroinvasion

 

REFERENCE:

[1] Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, Liu S, Zhao P, Liu H, Zhu L, Tai Y, Bai C, Gao T, Song J, Xia P, Dong J, Zhao J, Wang FS. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020 Feb 18:S2213-2600(20)30076-X

[2] Alsaad KO, Hajeer AH, Al Balwi M, Al Moaiqel M, Al Oudah N, Al Ajlan A, AlJohani S, Alsolamy S, Gmati GE, Balkhy H, Al-Jahdali HH, Baharoon SA, Arabi YM. Histopathology of Middle East respiratory syndrome coronovirus (MERS-CoV)
infection - clinicopathological and ultrastructural study. Histopathology. 2018 Feb;72(3):516-524.

[3] Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may be at least partially responsible for the respiratory failure of COVID-19 patients. J Med Virol. 2020 Feb 27.

AUTHOR:SEOK WOO YANG, M.D. & Ph.D. (E.mail: soplab@outlook.kr)

DATE: 2020.03.09

CONTENT:

 

 Human coronaviruses have a property to haemagglutinate with sheep erythrocytes(red blood cells).[1] In contrast, human coronaviruses do not haemagglutinate with chick erythrocytes.[2] 

Haemagglutination of sheep RBCs by viruses

 These findings are reminiscent of the interpretaton by Yang(2013) about 'Passover and Blood of Sheep or Goat'.[3] 

 

 The story about 'Passover and Blood of Sheep or Goat' is below: 


 In chapter 12: verse 5th ~ 7th of Exodus, Bible says, "5 The animals you choose must be year-old males without defect, and you may take them from the sheep or the goats. 6; Take care of them until the fourteenth day of the month, when all the people of the community of Israel must slaughter them at twilight. 7 Then they are to take some of the blood and put it on the sides and tops of the doorframes of the houses where they eat the lambs".

 

 There is a question, "why did God designate the blood of lamb or goat for doorframe painting?.

 

 In that time of Exodus, there should be poultry and animals besides sheep and goat.

 

 If the stickiness of blood is enough for removing infectious microbial pathogens, why did God designate specifically the blood of lamb or goat?

 

 Concerning this question, I think the blood painted on doorframe even at night can be dry in some degree. In the partial dry state, the microbial organisms attached within blood can be detached and easily floated into the air. The microbial-contaminated air can be inhaled into the lung of the Israelite and cause an infectious state.

 

 To overcome this problem, the blood of lamb or goat should have a certain specific attribute to seize microbial organism, even in the dry state of the blood.

 

 Regarding this problem, there is an interesting report by Medeiros et al (2001. Virology 289:74-85).[4] Medeiros et al found influenza virus particles stick to the RBCs (Red Blood Cell) in the blood of lamb or goat and aggregates RBCs (termed 'agglutination'). In contrast, the RBCs in the blood of chicken does not cause this reaction. As inferred from this fact, there must be specificity in each species of animal or poultry, in RBC agglutination to particular microbial pathogens.

 

 So I think God may order the blood of lamb or goat to remove the particular microbial pathogens at the Passover day night.

 

Through the stickiness and the RBC agglutination of the blood of lamb or goat, it is more likely that the amount of filtered microbial pathogens may work as a vaccine effect.


 In the chapter 12 of Exodus in the old testament, verse 12th and 13th, the Bible says, "12 on that same night I will pass through Egypt and strike down every firstborn - both men and animals - and I will bring judgment on all the gods of Egypt. I am the LORD. 13 The blood will be a sign for you on the houses where you are; and when I see the blood, I will pass over you.

 

 Although there can be other pathogens and view points to be considered, the plausible facts of haemagglutination with sheep erythrocytes and the rapid occurrence of death overnight seem to be similar to those of COVID-19 infection.

 

REFERENCE:

1. Hierholzer JC, Tannock GA. Quantitation of antibody to non-hemagglutinating 

viruses by single radial hemolysis: serological test for human coronaviruses. J Clin Microbiol. 1977 Jun;5(6):613-20.

2. Gerdes JC, Klein I, DeVald BL, Burks JS. Coronavirus isolates SK and SD from multiple sclerosis patients are serologically related to murine coronaviruses A59 and JHM and human coronavirus OC43, but not to human coronavirus 229E. J 
Virol. 1981 Apr;38(1):231-8.

3. Yang SW. Episode 2. Passover and Blood of Sheep or Goat. PASSOVER DAY – Medical Interpretation by a Pathologist (English). Copyright (C-2013-017025) 

4. Medeiros R, Escriou N, Naffakh N, Manuguerra JC, van der Werf S. Hemagglutinin residues of recent human A(H3N2) influenza viruses that contribute to the inability to agglutinate chicken erythrocytes. Virology. 2001 Oct 
10;289(1):74-85.

 

SUMMERIZER & FIGURE: SEOK WOO YANG, MD & PhD

DATE: 2020.03.08

CONTENT:

GENOMIC TYPE SS(single stranded) RNA virus
SIZE Pleomorphic, ranging from 60 to 220 nm in diameter
ETYMOLOGY (Latin) corona = crown.
APPEARANCE A fringed appearance of widely spaced club-spaced surface projections, viral spike(S) peplomers, reminiscent of a solar corona. 
PROTEINS that contribute to the overall structure of coronaviruses Spike (S), envelope (E), transmembrane (M), and nucleocapsid (N)
OUTLINE of coronaviruses Envelope composed of lipid bilayer.
GENOME Non-segmented single-stranded positive-sense RNA of approximately 30 kb 
PROPERTY The ability to haemagglutinate
   
Spike (S) protein

1. Virions(infected form of the virus) can be bound to specific surface receptors in the plasma membrane of the host cell via the N-terminus of the S proteins [9]

2. The major inducer of neutralizing antibody

Envelope (E) protein A small, integral membrane protein involved in several aspects of the virus’ life cycle, such as assembly, budding, envelope formation, and pathogenesis.[2]
Transmembrane (M) protein

1. The virion to fuse into the cell and to make protein antigenic.[3][4][5]

2. N protein forms a complex by binding to genomic RNA and M protein triggers the formation of interacting virions in this endoplasmic reticulum-Golgi apparatus

intermediate compartment (ERGIC) with this complex.[6][7][8] 

Nucleocapsid (N) protein

Virion structure, replication and transcription of coronaviruses.

Fig. Coronavirus Structure

REFERENCE

[1] David Greenwood, Richard C. B. Slack, John F. Peutherer. MEDICAL MICROBIOLOGY. 16 ed. 2002. Churchill Livingstone.

[2] Schoeman, D., Fielding, B.C. Coronavirus envelope protein: current knowledge. Virol J 16, 69 (2019).

[3] de Haan CA, de Wit M, Kuo L, Montalto-Morrison C, Haagmans BL, Weiss SR, et al. The glycosylation status of the murine hepatitis coronavirus M protein affects the interferogenic capacity of the virus in vitro and its ability to replicate in the liver but not the brain. Virology. 2003; 312: 395-406.

[4] Alexander S, Elder JH. Carbohydrate dramatically infl uences immune reactivity of antisera to viral glycoprotein antigens. Science. 1984; 226: 1328-1330.

[5] Wissink EH, Kroese MV, Maneschijn Bonsing JG, Meulenberg JJ, van Rijn PA, Rijsewijk FA, et al. Signifi cance of the oligosaccharides of the porcine reproductive and respiratory syndrome virus glycoproteins GP2a and GP5 for infectious virus production. J Gen Virol. 2004; 85: 3715-3723. 

[6] de Haan CA, Masters PS, Lili Kuo, Harry Vennema, Peter JM, Rottier. Coronavirus particle assembly: primary structure requirements of the membrane protein. J Virol. 1998; 72: 6838-6850. 

[7] Escors D, Ortego J, Enjuanes L. The membrane M protein of the transmissible gastroenteritis coronavirus binds to the internal core through the carboxy-terminus. Adv Exp Med Biol. 2001; 494: 589-593. 

[8] Narayanan K, Makino S. Characterization of nucleocapsid-M protein interaction in murine coronavirus. Adv Exp Med Biol. 2001; 494:577-582. 

[9] Lewicki DN, Gallagher TM. Quaternary structure of coronavirus spikes in complex with carcinoembryonic antigen- related cell adhesion molecule cellular receptors. J Biol Chem. 2002; 277: 19727-19734.

 

 

 

 

자료 출처: CDC Youtube

요약 정리자: SEOK WOO YANG, MD & PhD

날짜: 2020.03.05

내용 정리:

 

아래 내용을 먼저 숙지하고, 동영상 시청 하시면 많은 도움이 되실 겁니다.

 

Q1; 찬 물, 더운 물 어느 물을 사용 해야 하나?

A1: 모두 괜찮음.

 

Q2: 고체 비누, 액상 비누 중 어느 것이 더 좋은가?

A2: 모두 괜찮음.

 

Q3: 항균 비누가 일반 비누보다 더 효과적인가?

A3: 아님. 일반 비누와 차이 없음.

 

Q4: 비누가 없다면, 어떻하지?

A4: 물만 있는 경우라면, 물로 흐르는 물 아래에서 양측 손으로 서로 문지르면 세척 한다. 

     이후, 깨끗한 수건이나 에어 드라이로 말린다.

 

Q5: 비누가 없는 상황에서, 손소독제로 비누를 대체할 수 있는가?

A5: 그렇다. 알코올 최소 60% 이상이 함유된 손소독제를 비누 대용으로 사용할 수 있다.

 

Q6: 흐르는 물에 손 씻기는 얼마동안 해야 하나?

A6: 최소 20초이상 손을 문질러 닦아야 한다(scrub).

 

Q7: 손톱 아래도 닦아야 하나?

A7: 그렇다. 손톱 아래 세균, 바이러스가 많이 뭍어 있으므로 잘 닦아주어야 한다.

 

Q8: 손을 닦은 후, 수도꼭지와 세면실 문을 열 때, 종이 수건을 사용 해야 하나? 

A8: 여기에 대한 충분한 과학적 근거는 없지만, 종이 수건으로 수도꼭지 잠글 때와 세면실 문 손잡이 잡을 때 사용 해도 됨.

 

AUTHOR: SEOK WOO YANG, MD & PhD (soplab@outlook.kr)

DATE: 2020.03.05

CONTENT:

 

About ethanol as a sterilizing agent

Kariwa et al(2006) reported a below fact:

 

  • 70% ethanol reduced viral infectivity below the detectable level.

 

 There can be a question about how ethanol inactivates viral particles. 

 

 About this, Toppozine et al(2012) reported the evidence for enhanced permeability in both fluid and gel phases of the phospholipid bilayers in the presence of ethanol molecules. 

 

 The outline of Coronaviruses is composed of envelope structure, which is composed of lipid bilayer. The permeability of this lipid can be increased by ethanol.


 For this reason, ethanol as a disinfectant for Coronaviruses can be useful.

 

  • REFERENCE: 

    1. Kariwa H, Fujii N, Takashima I. Inactivation of SARS coronavirus by means of povidone-iodine, physical conditions and chemical reagents. Dermatology. 2006;212 Suppl 1:119-23. doi: 10.1159/000089211. PMID: 16490989.Date: 2020.03.05

  • 2. Laura Toppozini, Clare Armstrong, Matthew A. Barrett, Songbo Zheng, Lindy Luo, Hirsh Nanda, Victoria Garcia Sakai, Maikel C. Rheinstadter. Partitioning of ethanol into lipid membrane and its effect on fluidity and permeability as seen by X-ray and neurtron scattering. Soft Matter, issue 47, 2012.

 

 

 

 

 

정리 및 추가 논평: SEOK WOO YANG, MD & PhD.

날짜: 2020.03.03.

출처: Sarah Gibbens. Will warming spring temperatures slow the coronavirus outbreak?. NATIONAL GEOGRAPHIC. Feb 25. 2020. 

 

내용:

 

 신종 코로나 바이러스는 SARS, MERS처럼 대기 온도가 차갑고, 습도가 낮을 때 전파(transmission)가 잘 된다고 한다. SARS가 중국에서 대규모 발생이 겨울 11월에 있었던 점이 이를 뒷받침 한다. 반면, MERS는 중동 사막기후에서 발생 했는데, 이는 중동 국가에서 에어콘 시설로 인하여 실내 온도가 차갑고, 습도가 낮은 조건을 형성해 코로나 바이러스가 겨울철에 잘 전파되는 것과 같은 이유에서다.

 

 현재 중국 우한 폐렴과 대한민국의 신종 코로나 감염은 2월초부터 현재 3월 3일까지 감염 확산이 되는 시점도 겨울철인 점에서 중국 SARS 발생 계절과 같다.

 

 Ian Lipkin(director of the Columbia University's Center for Infection and Immunity)은 햇볕(sunlight)은 물체 표면(sufraces)으로 전파된 신종 코로나 바이러스 파괴에 기여 한다고 언급 한다.

 

 햇볕안에는 자외선(UV light)이 있어서 바이러스의 핵산(nucleic acid)과 세균(bacteria)을 파괴 한다. 실내보다 실외에 있으면 신종 코로나 바이러스 감염으로부터 좀 더 방어적인데, 이는 대부분 햇볕안의 자외선 덕분이라고 한다.

 

 햇볕의 일조량은 겨울철에는 적기 때문에, 신종 코로나가 겨울철에 만연한 이유를 설명하는 하나의 근거가 된다.

 

  마스크 부족으로 소독을 해서 다시 사용하는 경우가 많은데, 여러 소독법이 있지만, 소독으로인한 마스크 소재의 변형으로 마스크 고유 기능이 소실되는 경우가 많은 문제점이 있다. 이를 해결하는 방법중 하나로 '자외선 소독'이 있다. 자외선 소독을 신종 코로나 바이러스 소독에 응용하는 이유를 상기 언급한 관점에서 알 수 있다.

 


정리하면, 햇볕안의 자외선은 신종 코로나 바이러스 소독에 효과적이므로, 실외에서 일광욕과 신선한 공기를 자주 하는 것이 좋으며, 마스크 재사용시 '자외선 소독'을 권장 한다.

+ Recent posts